Web enconstrucció

‘‘Choice’’ and destiny: the substrate composition and mechanical stability of settlement structures can mediate coral recruit fate in post-bleached reefs

Yadav, Shreya; Rathod, Pooja; Alcoverro, Teresa; Arthur, Rohan. Coral Reefs : DOI 10.1007/s00338-015-1358-z (2015).  DIGITAL.CSIC

Increasingly frequent and intense ocean warming events seriously test the buffer and recovery capacities of tropical coral reefs. Post-disturbance, available settlement structures on a reef (often dead coral skeletons) vary considerably in their mechanical stability and substrate composition, critically influencing coral recruit settlement choice and fate. In the wake of a coral mass mortality in the Lakshadweep archipelago, we examine (1) the relative availability of recruit settlement structures (from stable to unstable: reef platform, dead massive coral, consolidated rubble, dead corymbose coral, dead tabular coral, and unconsolidated rubble) in 12 recovering reefs across three atolls in the archipelago, (2) the substrate composition [crustose coralline algae (CCA), mixed turf, macroalgae]of these structural forms, and (3) whether the choice and fate of young coral are mediated by the substrate and stability of different structural forms. For this, we measured the abundance and distribution of recruit (1 cm), juvenile (1–5 cm), and young adult (5–10) corals of 24 common coral genera. Four years after the mass mortality, reefs differed considerably in composition of settlement structures. The structures themselves varied significantly in substrate cover with dead tables largely covered in CCA [60 ± 6.05 % (SE)] and dead corymbose coral dominated by mixed turf (61.83 ± 3.8 %). The youngest visible recruits (1 cm) clearly preferred CCA-rich structures such as dead massives and tables. However, older size classes were rarely found on unstable structures (strongly ‘‘avoiding’’ tables, Ivlev’s electivity index, E = -0.5). Our results indicate that while substrate cover might mediate coral choice, the mechanical stability of settlement structures is critical in determining post-settlement coral survival. The composition and availability of settlement structures on a reef may serve as a characteristic signature of its recovery potential, aiding in assessments of reef resilience.