Microbial metabolic routes in metagenome assembled genomes are mirrored by the mass balance of polycyclic aromatic hydrocarbons in a high altitude lake

Vila-Costa, Maria; Lundin, Daniel; Casamayor, Emilio O.; Meijer, Sandra N; Fernández, Pilar; Dachs, Jordi. Environmental Pollution 308: 119592 (2022)  DIGITAL CSIC 

Semivolatile organic pollutants have potential for long range atmospheric transport and can thus reach pristine remote lakes by atmospheric deposition. Polycyclic aromatic hydrocarbons (PAHs) are among the most abundant and toxic semivolatile pollutants affecting lakes, however, the main factors controlling their fate are still poorly known. Here we show two contrasting lines of evidence for the importance of microbial degradation on the environmental fate of PAHs in a high altitude deep lake. The first evidence is given by an assessment of the metagenomes from surface and deep waters from Lake Redon (Pyrenees Mountains), which shows the occurrence of the initial ring hydroxylating dioxygenases as well as other PAH degrading genes from the complete metabolic route of PAH degradation. The second line of evidence is by the application of an environmental fate model for PAHs to Lake Redon under two contrasting scenarios considering the inclusion or not of degradation. When degradation is included in the model, PAH concentrations in the sediment are predicted within a factor of two of those measured in Lake Redon. Finally, the extent of the degradation sink is quantified and compared to other cycling PAH fluxes in the lake.