Assessing the potential of amino acid 13C patterns as a carbon source tracer in marine sediments: effects of algal growth conditions and sedimentary diagenesis

Larsen, T.Bach, L. T.Salvatteci, R.Wang, Yiming V.Andersen, NilsVentura, MarcMcCarthy, Matthew D.  Biogeosciences 12: 4979-4992 (2015)  DIGITAL.CSIC

Burial of organic carbon in marine sediments has a profound influence in marine biogeochemical cycles and provides a sink for greenhouse gases such as CO2 and CH4. However, tracing organic carbon from primary production sources as well as its transformations in the sediment record remains challenging. Here we examine a novel but growing tool for tracing the biosynthetic origin of amino acid carbon skeletons, based on naturally occurring stable carbon isotope patterns in individual amino acids ( 13CAA/. We focus on two important aspects for 13CAA utility in sedimentary paleoarchives: first, the fidelity of source diagnostic of algal 13CAA patterns across different oceanographic growth conditions, and second, the ability of 13CAA patterns to record the degree of subsequent microbial amino acid synthesis after sedimentary burial. Using the marine diatom Thalassiosira weissflogii, we tested under controlled conditions how 13CAA patterns respond to changing environmental conditions, including light, salinity, temperature, and pH. Our findings show that while differing oceanic growth conditions can change macromolecular cellular composition, 13CAA isotopic patterns remain largely invariant. These results emphasize that 13CAA patterns should accurately record biosynthetic sources across widely disparate oceanographic conditions. We also explored how 13CAA patterns change as a function of age, total nitrogen and organic carbon content after burial, in a marine sediment core from a coastal upwelling area off Peru. Based on the four most informative amino acids for distinguishing between diatom and bacterial sources (i.e., isoleucine, lysine, leucine and tyrosine), bacterially derived amino acids ranged from 10 to 15% in the sediment layers from the last 5000 years, and up to 35% during the last glacial period. The greater bacterial contributions in older sediments indicate that bacterial activity and amino acid resynthesis progressed, approximately as a function of sediment age, to a substantially larger degree than suggested by changes in total organic nitrogen and carbon content. It is uncertain whether archaea may have contributed to sedimentary 13CAA patterns we observe, and controlled culturing studies will be needed to investigate whether 13CAA patterns can differentiate bacterial from archeal sources. Further research efforts are also needed to understand how closely 13CAA patterns derived from hydrolyzable amino acids represent total sedimentary proteineincous material, and more broadly sedimentary organic nitrogen. Overall, however, both our culturing and sediment studies suggest that 13CAA patterns in sediments will represent a novel proxy for understanding both primary production sources, and the direct bacterial role in the ultimate preservation of sedimentary organic matter.