Long-distance influence of the Rhône River plume on the marine benthic ecosystem: Integrating descriptive ecology and predictive modelling

Martin, Daniel Pititto, FrancescoGil, João Mura, Maria Paola Bahamon, Nixon Romano, Chiara Thorin, SébastienSchvartz, ThibaultDutrieux, EricBocquenet, Yannick. Science of the Total Environment 673 : 790-809 (2019) DIGITAL CSIC

The Gulf of Lions (GoL) is among themost productive areas of theMediterranean Sea, with the Rhône River contributingwith asmuch as 90% of the liquid and solidmaterials (including anthropogenic chemicals) reaching the area. In this paper, we assessed whether classical descriptive ecology and MaxEnt predictive species distribution modelling were able to provide complementary information when analysing the long-distance influence of the river discharges on the GoL benthic ecosystem. Sampleswere collected in August 2014 from 12 stations covering the sedimentary plain of the deep submarine delta, from the Gulf of Fos to Gruissan. Sediments were mostly muddy with a high organic carbon and low P and N contents first decreasing and then increasing from east to west. The same pattern occurred for chlorophyll-a, particulate organic carbon and sea surface temperature, andwas overall correlatedwithmetal and pollutant contents derived fromagricultural, port, urban and industrial sources driven by Rhône outputs. We observed a typical deltaic succession in the benthos, showing a relatively low diversity and including polychaetes (Sternaspis scutata) and holothurians (Oestergrenia digitata) known to be indicators of high sedimentation rates. Overall, benthos showed an inversed pattern regarding environmental variables, an evident consequence of the Rhône River influence. The suitability of some species was either positively or negatively correlated with some of the environmental variables, producing species-specific predicted distribution patterns,with the highest amount of information allowing to predict distributions being mainly provided by organic pollutants. Evenwith a limited number of available samples, our integrated approach reveals to be a very robust tool to highlight hidden patterns and contributes to improve our knowledge on how rivermediated anthropogenic discharges may influence biodiversity distribution and functional patterns in marine benthic ecosystems.